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ANALYTICAL INVESTIGATION OF A HELICOPTER ROTOR DRIVEN 

AND CONTROLLED BY A JET FLAP 

By W i l l i a m  T. Evans and John L. McCloud I11 
Ames Research Center 

Results of a t h e o r e t i c a l  study of the  c h a r a c t e r i s t i c s  of a p a r t i c u l a r  

It w a s  found t h a t  the  momentum and power 
j e t - f l a t  r o t o r  a r e  presented and analyzed. 
high-speed d i g i t a l  computations. 
coef f ic ien ts  varied s i g n i f i c a n t l y  with shaf t  angle f o r  many f l i g h t  conditions. 
This f inding i s  ra t ional ized,  and i t s  s ignif icance explored. It w a s  a l s o  
found t h a t  higher harmonic control  of t h e  f l a p  reduced higher harmonics of 
blade flapping, t h r u s t  , and torque. 

The study made extensive use of 

The study indicated t h a t  higher speeds can be a t ta ined  i n  pure hel icopter  
f l i g h t  than w i t h  any conventional ro tor .  It f u r t h e r  indicated t h a t  t h e  maxi- 
mum a t ta inable  speed i n  such f l i g h t  i s  l i k e l y  t o  be higher if t h e o r e t i c a l  
supercirculatory t h r u s t  recovery on t h e  blade i s  rea l ized  i n  pract ice .  

INTRODUCTION 

The concept of dr iving and control l ing a hel icopter  r o t o r  by a variably 
def lectable  j e t  f l a p  has been proposed ( r e f s .  1 and 2 ) .  
a t  l e a s t  th ree  p o t e n t i a l  advantages: (1) mechanical s implif icat ion due t o  the  
subs t i tu t ion  of j e t - f l a p  control  f o r  conventional blade-pitch control,  (2 )  
increased l i f t  and propulsive force due t o  jet-induced l lsupercirculat ionJ1l  and 
( 3 )  reduced vibrat ions due t o  higher harmonic control  of t h e  j e t  f l a p .  Appli- 
cations t o  three  types of pure hel icopter  have been suggested: 
speed, low-drag vehicle ( V  > 200 knots),  ( 2 )  an e f f i c i e n t  medium-speed vehicle,  
and (3)  a crane hel icopter .  

Such a design o f f e r s  

(1) a high- 

The present invest igat ion w a s  undertaken t o  study t h e  t h e o r e t i c a l  
charac te r i s t ics  of a j e t - f l a p  rotor .  Because of the  complexity of the  problem, 
t h e  study w a s  based primarily on the  r e s u l t s  of high-speed d i g i t a l  computa- 
t ions .  Three versions of a computer program were wr i t ten  and a r e  described 
herein. 
driven or  jet-augmented ro tors  of almost any design, and t h e  t h i r d  being appli- 
cable t o  shaft-driven r o t o r s  only. The t h i r d  program w a s  used t o  permit 
comparisons of j e t - f l a p  and conventional rotors. 

The programs a r e  general, t h e  f i r s t  two being applicable t o  j e t -  

It should be emphasized t h a t  t h i s  concept of t h e  j e t - f l a p  r o t o r  includes 
t h e  notion of complete control  by j e t  def lec t ion  alone, tha t  is, t h e  blade 
p i tch  i s  fixed. I n  a manner e n t i r e l y  analogous t o  conventional co l lec t ive  and 
cyc l ic  p i t c h  control,  "col lect ive"  and "cyclic" j e t  def lect ions can be defined 
and given analogous notation. Thus, i n  t h i s  report ,  t h e  je t -def lec t ion  angle 
6 i s  given as 



- - - - 
8 = A, - A, cos $ - B, s i n  $ - A2 cos 2$ - . . . 

- - 
where A. 
j e t  def lect ion,  B1 t h e  "longitudinal cyc l ic"  j e t  deflection, and the  higher 
order coeff ic ients  "higher harmonic control t1  parameters. 

i s  termed t h e  ' 'collective' '  j e t  deflection, A 1  the  " l a t e r a l  cycl ic"  - 

O f  importance i n  t h e  study i s  an over -a l l  j e t  momentum coeff ic ient  Cj,. 
Although it i s  a force  coef f ic ien t ,  it can be expected t o  cor re la te  wel l  with 
t h e  r o t o r  power coef f ic ien t ,  Cp, s ince t h e  r o t o r  i s  e n t i r e l y  j e t  propelled. 
The jet-momentum coef f ic ien t  i s  therefore  emphasized i n  t h i s  report .  
of i n t e r n a l  flow, however, a r e  not  examined. 

Problems 

NOTAT I O N  

average or "col lect ive"  j e t  def lect ion,  deg 

harmonic coef f ic ien ts  - of j e t  deflection, deg, 
6 = KO - A 1  cos $ - B1 s i n  $ - A2 cos 2$ - . . . 

nozzle a rea  of j e t  f l a p  ( a l l  blades),  f t 2  

l a t e r a l  and longi tudinal  cyc l ic  pitch,  respectively,  deg 

harmonic coef f ic ien ts  of blade flapping, deg, 
p = a. - a1 cos $ - b l  s i n  $ - a2 cos 2$ - . . 

t i p  loss  fac tor ,  0.99 f o r  j e t - f l a p  rotor ,  0.98 f o r  shaft-driven ro tor  

number of blades 

H r o t o r  longi tudinal  force coef f ic ien t ,  
p( s ~ R ) ~ ~ R ~  

M j V  j 
r o t o r  jet-momentum Coefficient , 

p( S2R)'flR2 

L r o t o r  l i f t  coef f ic ien t ,  
p( m)25cR2 

Mj 
~ S ~ R S R ~  

r o t o r  mass-flow coef f ic ien t ,  

+ c  summation of component power coef f ic ien ts ,  C PC7R + 'pi + 'Po 

%OR Corio l i s  power coef f ic ien t ,  computed as C 
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CX 
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Ce 

j 
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c 2  

C 
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induced power coef f ic ien t ,  
2 ( V / W  

3 
p r o f i l e  power coef f ic ien t ,  - f 1 G ~ l ' I  'do dx n 

xc $ 

cxR TE) propulsive power coeff ic ient ,  

Q shaf t  torque coeff ic ient ,  
p( .QR)~SR'R 

2 ( m ) R l ' + a d  0 dX 
Coriol is  torque coef f ic ien t  , 

p( .QR)~SR'R 

X propulsive force coef f ic ien t  , - 
qSR2 

X ro tor  propulsive force coef f ic ien t ,  
p( m)2SR2 

l o c a l  blade chord, f t  

d t o t a l  l o c a l  sect ion drag coef f ic ien t ,  - 
lC 

drag coef f ic ien t  due t o  sect ion shape (no j e t  e f f e c t s )  

l c B R c r 2  

BR f r2 dr  

equivalent blade chord (on t h r u s t  bas i s ) ,  9 ft 

r C  

LeBRcr3 dr 

JBRr3 

equivalent blade chord (on thrust-moment b a s i s ) ,  9 ft  

rC 
m j V j  

l o c a l  sect ion momentum coef f ic ien t  ' c y  
2 t o t a l  l o c a l  sec t ion  l i f t  coef f ic ien t  - 

l i f t  coef f ic ien t  due t o  sect ion shape (no j e t  e f f e c t s )  

' 92c 

t o t a l  l o c a l  sec t ion  drag per u n i t  span, l b / f t  

3 
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o f f s e t  of f lapping hinge, f t  

accelerat ion of gravity,  f t /sec2 

downwind for.ce perpendicular t o  shaf t ,  l b  

mass moment of i n e r t i a  about flapping hinge, s lug-f t2  

l i f t ,  l b  

t o t a l  l o c a l  sect ion l i f t  per u n i t  span, l b / f t  

Mach number 

t o t a l  mass flow per second through a l l  blades, slugs/sec 

t h r u s t  moment of blade about f lapping hinge, f t - l b  

weight moment of blade about flapping hinge a t  P = 0, f t - l b  

j e t  mass f l u x  per u n i t  span, a l l  blades, slugs/ft /sec 

r a d i a l  m a s s  f l u x  a t  a given r a d i a l  s t a t i o n ,  a l l  blades, slugs/sec 

number of azimuth posi t ions used i n  computation 

shaf t  torque, f t - l b  

free-stream dynamic pressure pV2, lb / f t2  

l o c a l  dynamic pressure pv',  l b / f t 2  

r o t o r  radius ,  f t  

' 2  

' 2  

r a d i a l  dis tance along blade from hub, f t  

supercirculat ion t h r u s t  parameter, see equation (7 )  

supercirculat ion l i f t  parameter, see equation (6)  

t h r u s t  along shaf t  ax is ,  l b  

i n t e r n a l  temperature of blowing duct, ?F 

l o c a l  v e l o c i t y  perpendicular t o  blade span, f t / sec  

dimensionless l o c a l  veloci ty ,  U/m 

free-stream veloci ty ,  f t / sec  

j e t  ve loc i ty  , f t / sec  

4 
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Ax 
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80.7 

h 

CL 

D 

d 

advance r a t i o  

induced ve loc i ty  i n  T-direction, f t / s e c  

induced ve loc i ty  i n  H-direction, f t / s ec  

propulsive force ,  pos i t i ve  upstream, l b  

dimensionless r a d i a l  s t a t ion ,  r/R 

l o c a l  sec t ion  angle of a t t ack ,  deg 

sha f t  angle, pos i t ive  rearward f r o m t h e  v e r t i c a l ,  deg 

blade f lapping angle with respect  t o  sha f t  pos i t ive  upward, deg 

I R4 mass constant of blade,  pce - 
I h  

je t - reac t ion  increment t o  sec t ion  drag coef f ic ien t  

supercirculat ion increment t o  sec t ion  drag coe f f i c i en t  

je t - reac t ion  increment t o  sect ion l i f t  coef f ic ien t  

supercirculat ion increment t o  sec t ion  l i f t  coef f ic ien t  

spanwise extent  of s l o t  i n  terms of x 

j e t  def lec t ion ,  pos i t ive  downward from chordline,  deg 

e %  o f f s e t  parameter, - - 
I h  

co l l ec t ive  p i t ch  of blade a t  x = 0.7, deg 

inflow r a t i o ,  
v s h % - V T  

m 
v cos a, - VH 

t ip-speed r a t i o ,  

free-stream air  densi ty ,  s l u g s / f t 3  

m 

bce ro to r  s o l i d i t y ,  - 
3t.R 

bc 
'X l o c a l  s o l i d i t y  

5 



9 azimuth s t a t i o n ,  from r e a r  i n  d i rec t ion  of ro ta t ion ,  deg 

R r o t a t i o n a l  ve loc i ty  of ro tor ,  rads lsec  

Subscripts 

C cut out ( a t  0. ULR) 

maX maximum 

9 a t  azimuth pos i t ion  IJI 

DESCRIPTION OF COMPUTER PROGRAMS 

Flow char t s  f o r  t h e  j e t - f l a p  r o t o r  programs a r e  shown i n  f igure  1. 

The bas ic  computational approach i s  t h a t  of reference 3, wherein a blade 
flapping pa t te rn  i s  assumed, t h e  r e s u l t i n g  t h r u s t  moment i s  calculated and 
harmonically analyzed, the  flapping i s  then revised and t h e  t h r u s t  moment 
recalculated,  and s o  on, u n t i l  t h e  i t e r a t i o n  repeats  within t h e  meaningful 
accuracy of t h e  computations. Simultaneously with t h e  flapping revisions,  the  
momentum coef f ic ien t  

t i a l l y  zero ( t h e  required equilibrium condition) . 
t i o n  on flapping pa t te rn  and C has proven qui te  f e a s i b l e . )  The well-known 

a l t e r n a t e  approach of in tegra t ing  the  d i f f e r e n t i a l  equation of flapping motion 
( r e f .  4) would a l s o  have been a n  e n t i r e l y  reasonable point of departure f o r  
developing these  programs. 

i s  a l s o  revised u n t i l  t h e  shaf t  torque i s  essen- j R  
(This simultaneous i t e r a -  

j R  

After steady flapping and zero CQ a r e  a t ta ined ,  addi t ional  i t e r a t i o n s  
a r e  performed t o  a t t a i n  e i t h e r  ( a )  a specif ied shaf t  angle and advance r a t i o  
by adjustment of inflow r a t i o  A and tip-speed r a t i o  p (program A), ,  or 
( b )  a specif ied resu l tan t  force a t  one or more shaf t  angles by adjustment of 
t h e  je t -def lec t ion  controls  (program X ) .  When r e s u l t s  a t  several  angles a r e  
computed, program X proceeds i n  such a manner as t o  f i n d  t h e  angle a t  which 
C 

ad jus t  j e t  veloci ty ,  which a f f e c t s  mass flow and C with each change of 

C . Both programs permit suppression of a r b i t r a r y  harmonics of blade f lap-  

ping, s o  t h a t  t e e t e r i n g  and gimbal-mounted r o t o r s  may be simulated as well as 
free-to-cone r o t o r s .  

i s  minimized. Both programs assume s u p e r c r i t i c a l  pressure r a t i o s  and 
j R  

j R  

A t h i r d  program f o r  shaft-driven r o t o r s  p a r a l l e l s  program X,  adjusting 
conventional controls  t o  obtain a specif ied r e s u l t a n t  force.  

A l l  programs include t h e  standard assumptions of r i g i d  blades, uniform 
inflow, t h e  a p p l i c a b i l i t y  of two-dimensional data  t o  blade elements, small 

6 



flapping angles, no lagging motion, e t c .  On the  other hand, e f f e c t s  of s t a l l ,  
compressibility, and spanwise sect ion var ia t ion  can be included i n  the  two- 
dimensional data  used.l 

Two-dimensional j e t  e f f e c t s  a r e  accounted f o r  i n  terms of t h e  l o c a l  
momentum coeff ic ient  c j  (of ten  designated c p ) ,  defined as mjVj/qzc. The 
t o t a l  sect ion l i f t  and drag a r e  assumed t o  consis t  of th ree  components each; 
(bas ic  force)  + ( j e t - reac t ion  increment) + (supercirculat ion increment): 

The f i r s t  component of each equation i s  determined by t a b l e  lookup and i n t e r -  
polation as a t r i v a r i a t e  function of l o c a l  angle of a t tack,  Mach number, and 
radial s t a t i o n  ( i . e . ,  section shape). 
obtained by geometric considerations as 

The je t - reac t ion  increments a r e  

Based on references 5 and 6, & i s  calculated as 
2 ,  

with sz = 3.18 f o r  a l l  computations of t h i s  study ( r e f .  6 ) .  Final ly ,  

J 
&ds = -sdc*[1 - c o s ( a  + & ) I  (7) 

w i t h  
& + b d s  = -e for a l l  a, 6 ) .  If no t h r u s t  recovery i s  assumed, Sd = 0 .  

I n  t h i s  study, t h e  value Sd = 1/2 has been used i n  most computations. (For 
a recent discussion of j e t - f l a p  t h r u s t  recovery, and a review of t h e  l i t e r a -  
t u r e ,  see reference 7, wherein it i s  argued t h a t  both theory and experiment 
indicate  t h a t  f u l l  t h r u s t  recovery can be expected i n  s teady-state  flow. How- 
ever,  t h e  most reasonable assumption t o  apply t o  a j e t - f l a p  r o t o r  i s  not clear, 
and t h e  e f f e c t  of varying t h e  parameter i s  examined in the  present study.) 

0 5 Sd 5 1. For t h e o r e t i c a l  f u l l  t h r u s t  recovery, Sd = 1 ( i . e . ,  

dj 3 

Sd 

- 
1 The uniform inflow i s  assumed t o  be opposite t o  t h e  d i rec t ion  of the 

resu l tan t  force r a t h e r  than t h e  t h r u s t ,  resu l t ing  i n  an induced component 
i n  the  d e f i n i t i o n  of p. While t h e  j u s t i f i c a t i o n  f o r  t h i s  minor refinement of 
a gross assumption i s  open t o  question, it w a s  found t h a t  the  inclusion of vH 
did not mater ia l ly  a f f e c t  computed r e s u l t s .  

vH 

7 



I 

a 

Sketch (a)  

The formulas above a re  applied 
throughout t h e  range of angle of a t t ack  
and Mach number. 
among other  th ings ,  t h a t  pa t te rns  of stall  
a r e  not much a f f ec t ed  by these  formulas, 
as i l l u s t r a t e d  in sketch ( a ) .  The omis- 
s ion  of any s t a l l - a l l e v i a t i n g  e f f e c t  may 
be an unduly pess imis t ic  assumption. 

This approach means, 

The spanwise d i s t r ibu t ions  of both 
mass flow and j e t  ve loc i ty  have been 
assumed constant,  which permits t he  def- 
i n i t i o n  of t h e  r o t o r  momentum coe f f i c i en t  
as 

MjV j 
c =  
jR P(SLR)~I IR~  

where M j  i s  t h e  t o t a l  mass flow per 

second through a l l  blades of t h e  r o t o r .  
The r e l a t i o n s h i p  between l o c a l  c and 
C can be shown as j 

j R  

- 2 9 ,  

- AXjOXU2 

Relationships among C and pressure 

r a t i o ,  nozzle a rea ,  j e t  ve loc i ty  and mass 
flow a r e  based on standard thermodynamic 
equations with t h e  assumption of isen-  
t rop ic  expansion. 

j R  

DESCRIPTION OF ROTORS 

The j e t - f l a p  r o t o r  analyzed i n  t h i s  study i s  two-bladed, with o f f se t  
f lapping hinges. The blade plan form, sec t ion  var ia t ion ,  and t w i s t  a r e  shown 
i n  f igu re  2 ( a ) .  
t ape r  i n  t h i s  region from a th i ck  sec t ion  ( 2 1  percent)  a t  t h e  inboard end t o  
a t h i n  sect ion (about 8 percent) a t  t h e  t i p .  
accommodate t h e  i n t e r n a l  duct .  Other physical  parameters a re :  
y '  = 0.509, q = 0.0837, cr = 0.0488, and nozzle height = 0.0006R. 
t i o n s  f o r  p r inc ipa l  parameters a r e  indicated i n  f i g u r e  2 ( b ) .  

The j e t  f l a p  extends fram 0.7R t o  t h e  t i p .  Note t h e  rap id  

The th i ck  sec t ion  i s  required t o  
R = 19.685 f t ,  

Sign conven- 

Figure 3 shows p l o t s  of t h e  bas ic  a i r f o i l  da ta  assumed. Data f o r  t h e  t i p  
sec t ion  a r e  based on curves f o r  t h e  NACA 64-008 sec t ion  as reported i n  

8 



reference 8. 
Data" ( r e f .  9) f o r  NACA 6-ser ies  th ick  sect ions and on t h e  Mach number trends 
suggested by comparisons of t h e  data f o r  t h e  NACA 0015 and 0012 sections, as 
reported in references 10 and 11, respect ively.  D a t a  f o r  extreme angles of 
a t tack  a r e  based on reference 12. 

D a t a  f o r  t h e  inboard region a r e  based on t h e  "Summary of A i r f o i l  

A few calculat ions were made f o r  a shaft-driven r o t o r  with the  same 
physical c h a r a c t e r i s t i c s  as t h e  j e t - f l a p  ro tor ,  except t h a t  a i r f o i l  data typ i -  
c a l  of t h e  NACA 0012 sec t ion  were assumed f o r  t h e  e n t i r e  ro tor  blade. 

RFSULTS AND DISCUSSION 

The mater ia l  presented here i s  organized i n  t h r e e  main sect ions.  The 
f i r s t  two sections examine the  inherent c h a r a c t e r i s t i c s  of the j e t - f l a p  rotor ,  
f i rs t  a t  moderate speeds, and then a t  high speeds. The discussion i n  these 
sections i s  f a i r l y  lengthy because of the  unfamiliar and untested nature of 
t h i s  type of r o t o r .  The f i n a l  sect ion b r i e f l y  compares the  j e t - f l a p  ro tor  
with conventional ro tors ,  from t h e  standpoint of performance c a p a b i l i t i e s  and 
power requirements. 

Charac te r i s t ics  of t h e  Jet-Flap Rotor a t  Moderate Speeds 

I n  t h i s  section, r e s u l t s  f o r  advance r a t i o s  from 0.3 t o  0.5, corresponding 
t o  forward speeds from lo5 t o  175 knots, a r e  examined. A l l  r e s u l t s  a re  f o r  
constant t i p  speed of 591 f t /sec,  corresponding t o  

Dependence of momentum and power coef f ic ien ts  on shaf t  angle .- I n  
f igure  4(a)  a r e  shown t y p i c a l  curves of 
condition. The corresponding control  s e t t i n g s  and blade flapping harmonics 
a r e  shown i n  f igure  4 ( b ) .  
i s  accomplished exclusively by var iable  j e t - f l a p  def lect ion,  the blade p i tch  
being f ixed . )  
shaft-driven r o t o r  ( control  being conventional blade-pitch control)  . For the  
j e t - f l a p  r o t o r ,  t h e  var ia t ion  of power with s h a f t  angle i s  i n  marked contrast  
t o  i t s  invariance f o r  the  conventional r o t o r .  For t h e  l a t t e r ,  the  c l a s s i c a l  
expectation of "f lapping-f eathering equivalence" i s  c l e a r l y  indicated by the  
r e s u l t s ;  t h a t  i s ,  equal changes of shaf t  angle and longi tudinal  p i t c h  control  
( feather ing)  r e s u l t  i n  an equal and opposite change of longi tudinal  f lapping, 
such t h a t  t h e  r e s u l t a n t  force,  power, and torque a r e  unchanged. Collective 
p i tch  i s  e s s e n t i a l l y  invariant  - also,  whereas, f o r  t h e  j e t - f l a p  ro tor ,  "collec- 
t i v e "  j e t  def lec t ion  A. var ies  s ign i f icant ly .  

il = 30 rads/sec. 

C j ,  and Cp vs as f o r  a f ixed f l i g h t  

(It should be remembered t h a t  control of t h i s  ro tor  

For comparison, s imilar  curves a r e  shown in f igure 5 f o r  t h e  

This f inding may be ra t iona l ized  i n  t h e  following way. The resu l tan t  
force on the  j e t - f l a p  r o t o r  may be thought of (although it i s  not so calcu- 
l a t e d )  as the sum of a basic  r o t o r  force and a j e t - f l a p  increment. Although 
t h e  bas ic  r o t o r  force  may be conceived of in various ways, it w a s  calculated 
f o r  purposes of i l l u s t r a t i o n  as t h e  force developed by t h e  r o t o r  when driven 
e n t i r e l y  by an undeflected t i p  j e t .  Presented in  f igure  6 i s  t h e  var ia t ion  of 
t h e  basic  r o t o r  force  with shaf t  angle f o r  a p a r t i c u l a r  advance r a t i o ,  as wel l  
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as t h e  incremental vectors needed t o  produce a spec i f ied  r e s u l t a n t  force  f o r  
t h e  j e t - f l a p  r o t o r .  It can be seen t h a t  t h e  incremental vector a t  t h e  shaf t  
angle f o r  minimum C j R  
t i l t i n g  of t h e  basic  force  vector.  

i s  a compromise between minimum extension and minimum 

Figure 7 shows curves of Cj ,  vs  as f o r  advance r a t i o s  of 0.3 t o  0.5 f o r  

two vehicles .  
values of CLR and CX a t  constant r o t a t i o n a l  ve loc i ty .  This corresponds t o  
two p a i r s  of f ixed  values of l i f t  and "drag area" X/q.) 
f igure  i s  t h e  locus of optimum shaf t  angles f o r  each vehicle .  

(Specif ical ly ,  the  comparison i s  made f o r  two p a i r s  of f ixed  

Also shown i n  t h e  

Effects  of blade -pitch.- While a constant blade p i t c h  i s  envisioned f o r  
t h e  j e t - f l a p  r o t o r ,  it i s  important t o  examine t h e  e f f e c t s  of blade p i tch  f o r  
an indicat ion of t h e  most appropriate value t o  be incorporated i n  a p r a c t i c a l  
design. Figure 8 shows the e f f e c t s  of various p i t c h  angles (e,.,) between 8' 
and 12'. 
power would probably - be required a t  s t i l l  lower p i t c h  angles.  The co l lec t ive  
j e t  def lec t ion  A, increases rapidly as blade p i t c h  i s  decreased from 12' 
( f i g .  4 ( b ) )  t o  8' - ( f i g .  8 ( b ) ) ,  as might be expected. 
j e t  def lec t ion  B1 decreases somewhat. I n  a l l  cases, coning i s  v i r t u a l l y  
invariant ,  while a l l  harmonics of blade flapping decrease, as the  shaf t  angle 
becomes more near ly  v e r t i c a l .  

0 It can be seen t h a t  the  l e a s t  power i s  required a t  8 , and t h a t  l e s s  

"Longitudinal cycl ic"  

Note t h a t  t h e  minimum C j ,  does not occur a t  t h e  s h a f t  angle f o r  minimum 
i s  

PO 
f lapping.  

very sens i t ive  t o  blade pitch,  whereas the  power component due t o  Cor io l i s  
forces ,  C 

marked v a r i a t i o n  i n  
on the  r e t r e a t i n g  blade (c(max = l3O f o r  
d i t i o n  f o r  these  calculat ions i s  not wel l  matched t o  a fLxed p i tch  of 12O. 

Note a l s o  ( f i g .  8 ( c ) )  t h a t  t h e  p r o f i l e  power coef f ic ien t  C 

i s  almost invariant  i n  t h e  range of t h e  r e s u l t s  presented. The 

Clearly, t h e  f l i g h t  con- 
r e f l e c t s  marked var ia t ion  i n  l o c a l  angle of a t t a c k  

'COR' 
cpO 

= 12'). 

Effec ts  of Cx.- I n  f igure  9(a)  a r e  shown curves of C j ,  vs as f o r  
severa l  values of Cx. The locus of optimum values of as i s  a l s o  indicated.  
The power v a r i a t i o n  along t h i s  locus i s  shown i n  p a r t  ( b )  of t h e  f i g u r e .  

I n  t h e  regime of steady forward f l i g h t  f o r  r e a l i s t i c  machines ( i . e . ,  
s u b s t a n t i a l  
being t h e  propulsive power required.  
importance should be noted, s ince it amounts t o  as much as one-third of the  
t o t a l  a t  low 

Cx) , t h e  power increases rap id ly  with Cx, the  pr inc ipa l  component 
Cbr io l i s  power a l s o  increases, and i t s  

CX, and t o  roughly one-fourth a t  high Cx. 

The power and momentum coef f ic ien ts  r i s e  as Cx drops t o  zero because of 
a rapid r i s e  i n  p r o f i l e  power, r e f l e c t i n g  a rap id  r i s e  i n  sect ion drag over 
much of t h e  r o t o r .  This drag r i s e  must i n  t u r n  be due t o  excessive l o c a l  
angles of a t tack .  The process can be a t t r i b u t e d  t o  t h e  high f ixed  p i t c h  of 
t h e  r o t o r  blades, and t h e  progressive rearward t i l t i n g  of the  t ip -pa th  plane; 
i n  a conventional ro tor ,  the  r e s u l t  would be increasing l i f t  and t h e  onset of 
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s t a l l .  
"basic r o t o r  l i f t "  (discussed e a r l i e r )  i s  concerned; however, t h e  over-al l  
l i f t  i s  de l ibera te ly  held constant by adjustments of the  j e t - f l a p  controls .  

I n  the  j e t - f l a p  rotor ,  t h e  same phenomenon occurs, s o  far as t h e  

Attainable forces.-  I n  f igure  9, r e s u l t s  were presented f o r  the  j e t - f l a p  

For the same conditions, it i s  shown i n  f igure  10 t h a t ,  a t  t h e  high- 

19 can be seen 

r o t o r  f o r  propulsive force coef f ic ien ts  up t o  
of 0.5. 
e s t  
angles computed. A t  t h i s  highest Cx, t h e  e f f e c t  of varying CL (choosing 
the  optimum shaf t  angle f o r  each case) i s  shown i n  f igure  11. 
t h a t  both C j ,  and b x  a r e  minimized a t  CLR 0.006 (CLR/CJ = 0.123). The 
value of 6 , ~  a t  t h i s  condition i s  about 72'. The values CLR = 0.006, 
Cx = 0.015, and V / f B  = 0.5 
X/q = 18.25 f t2 ,  and V = 175 knots, and suggest t h e  order of magnitude of 
a t ta inable  forces  a t  t h i s  moderately high forward speed. Similar data f o r  one- 
half t h e  propulsive force a r e  a l s o  shown i n  t h e  f igure,  where it can be seen 
tha t  C j, and Emax a r e  minimized a t  CLR 2 0.005 ( C L ~ / C J  = 0.102). 

CX = 0.015 a t  an advance r a t i o  

C x ,  t h e  maximum j e t  def lect ion (Eo + 1'B.I) exceeds TO0 f o r  the  shaft  

correspond, respectively,  t o  L = 6060 l b ,  

Effects  of nozzle area.- A given value of C may be the r e s u l t  of 
j R  

varying combinations of mass flow and j e t  ve loc i ty  ( C  

While t h i s  does not a f f e c t  l o c a l  sect ion forces,  which a r e  dependent only on 
l o c a l  

might be forces,  which a r e  dependent on r a d i a l  mass flow. Therefore, C 

sens i t ive  t o  the parameter a f fec t ing  mass flow in these computations, namely, 
t h e  area of the  nozzle. However, t h e  r e s u l t s  of a comparison of two nozzle 
areas,  shown i n  f i g u r e  12, indicate  only a s l i g h t  e f f e c t .  (The comparison i s  
made f o r  the  same f l i g h t  condition, not t h e  same 

i s  some 14  percent grea te r  than t h e  smaller, which w a s  the  value used f o r  a l l  
other computations of t h i s  study. ) 

= CmSs x ( V j / s L s ) ) .  

without regard t o  i t s  component fac tors ,  it does a f f e c t  Coriol is  

j R  

c j  

'COR 

Cj,. The la rger  nozzle area 

i s  p a r t l y  a t t r i b u t a b l e  t o  the  f a c t  
"COR T h i s  minor e f f e c t  of AN on 

can be shown t o  be roughly proportional t o  & ra ther  than t o  
'COR 

t h a t  C 

AN i t s e l f ,  f o r  constant C j R o  However, because of differences i n  j e t  density, 
t h e  a c t u a l  e f f e c t  i n  t h e  r e s u l t s  of f igure  12 i s  even l e s s  than would be indi-  
cated by t h i s  approximate relat ionship.  

Effects  of higher harmonic control.- Possible benef i t s  of higher harmonic 
control  of the  j e t  f l a p  were b r i e f l y  investigated.  It w a s  found tha t  t h e  
cosine and sine components of t h e  second harmonic of blade flapping could be 
almost independently suppressed by-the corresponding components of second har- 
monic j e t - f l a p  def lec t ion  (2 and A2, respect ively) ,  a t  l e a s t  f o r  t h e  a rb i -  - 
- t r a r y  f l i g h t  condition chosen ( V / f B  = 0.3, as = -18.46O, xo = -20.566', A 1  = 0, 
B1 = 12.57T0, r e s u l t i n g  i n  
such second harmonic control  on t h e  d i s t r i b u t i o n s  of 
shown i n  f igure  13. The pr inc ipa l  e f f e c t  i s  a d r a s t i c  reduction i n  t h e  second 
harmonic of 

CLR = 0.0048 and CX = 0.0112). The e f f e c t s  of 
p,  CT, and CQ a r e  

CT, but  some reduction i s  a l s o  e f fec ted  i n  t h e  t h i r d  harmonic, 
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and i n  both the  second and t h i r d  harmonics of 
both CT and CQ a r e  s l i g h t l y  increased. To t h e  extent  t h a t  shake and vibra-  
t i ons  a r e  due t o  higher harmonics of force  and moment var ia t ions ,  these  resu l t s  
s t rongly suggest t h e  p o t e n t i a l  reduction of such undesirable e f f e c t s  through 
appropriate use of higher harmonic control .  

CQ. The f i rs t  harmonics of 

Charac te r i s t ics  of t h e  Jet-Flap Rotor a t  High Speeds 

In  t h i s  sect ion,  r e su l t s :  f o r  advance r a t i o s  from 0.50 t o  0.86, corre- 
sponding t o  forward speeds frbm 175 t o  301 knots, a r e  examined. 

Results a t  constant !J.R.- Results obtained a t  high advance r a t i o s  a r e  
shown i n  f i g u r e  14. The l i f t  and propulsive force  coef f ic ien ts  a r e  the  same ~- 

as f o r  ce r t a in  da ta  of f igu re  4, and correspond t o  f ixed  values of vehicle  
weight and drag a rea  of 4920 l b  and 6.09 sq  ft, respect ively.  The highest  
advance r a t i o  shown, 0.86, corrqsponds t o  a f l i g h t  ve loc i ty  of 301 knots, a 
speed a t  which pure he l icopter  fv igh t  would not be computable under any reason- 
able  assumptions, f o r  any conventional r o t o r .  A t  t h i s  extreme condition, t h e  
advancing t i p  Mach number i s  0.98, which, though high, i s  not necessar i ly  
impractical ,  i n  view of t h e  t h i n  t i p  sec t ion .  A t  both t h i s  advance r a t i o  and 
t h e  advance r a t i o  of 0.8, a port ion of t he  j e t  f l a p  encounters t h e  region of 
reverse flow on the  r e t r e a t i n g  blade.  

Other than t h e  high f l i g h t  ve loc i ty  of 301 knots ,  t h e  r e s u l t s  presented 
involve no p a r t i c u l a r  su rp r i se s .  The va r i a t ions  of C j R  with as a r e  
e n t i r e l y  s i m i l a r  t o  those a t  lower advance r a t i o s .  The je t -def lec t ion  require-  
ments increase with advance r a t i o ,  but  at a decreasing r a t e .  Power require-  
ments bu i ld  up rapidly,  pa r t i cu la r ly  t h e  propulsive power required, which 
increases as t h e  cube of advance r a t i o  ( f o r  constant 
e f f ec t s  a r e  r e f l ec t ed  i n  increasing Cpo and momentum requirements i n  

Cx). Compressibility 

cpcoR* 
Again, t h e  s ign i f i can t  f inding would seem t o  be t h e  mere f a c t  t h a t  it w a s  

possible  t o  compute a 3OO-knot case f o r  pos i t ive  propulsive force and s i g n i f i -  
cant l i f t  . 

Results a t  l imi ted  t i p  Mach number.- If advancing t i p  Mach number i s  t o  
be r e s t r i c t e d  t o  avoid severe compressibil i ty e f fec ts ,  it i s  necessary t o  reduce 
r o t a t i o n a l  ve loc i ty  as advance r a t i o  i s  increased beyond some pa r t i cu la r  value. 
To examine t h i s  mode of high-speed f l i g h t ,  r s u l t s  were obtained a t  an advance 
r a t i o  of 0.7 and an advancing t i p  Mach numb r of 0.8, t h e  same as t h a t  which 

forward speed corresponding t o  these  conditions w a s  220 knots, and t h e  t i p  
speed, QR, w a s  531 f t / sec ,  corresponding t o  

prevailed a t  an advance r a t i o  of 0.5 in t h  ! r e s u l t s  previously discussed. The 

R = 27 rads/sec. 

Results a r e  presented i n  f igu re  15 f o r  two values of Cx,  corresponding 
t o  drag areas  of 6.09 and 9.13 sq  f t .  A s  i n  t h e  e a r l i e r  high-speed r e su l t s ,  
t he  l i f t  w a s  4920 lb ,  but  t h e  coef f ic ien t  
of t he  reduction i n  R.  

C L ~  w a s  necessar i ly  higher because 

Some power saving w a s  rea l ized ,  i n  both t h e  Cor io l i s  and p r o f i l e  power 
components. 
17 percent, respect ively,  f o r  t h e  lower Cx. The l a rges t  component, propulsive 
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power, w a s  necessar i ly  the  same .  
dimensional bas i s  a t  t h e  same forward speed.) 

(The power components were compared on a 

A n  adverse e f f e c t  can be seen i n  t h e  increase in required j e t  deflection. 
A s  a spec i f ic  example, a t  t h e  optimum shaf t  angles, 6- f o r  Cx = 0.005 a t  
V = 220 knots ( f i g .  15) w a s  g rea te r  than f o r  the  same 
( f i g .  14). Primarily because of t h i s  e f f e c t  of rapidly increasing &X w i t h  
forward speed, no attempt w a s  made t o  compute higher speed cases f o r  an advanc- 
ing t i p  Mach number of 0.8. 
knots would require an advance r a t i o  of 1.3, and an increase of 53 percent i n  

Cx a t  V = 245 knots 

It may be worth noting t h a t  such f l i g h t  a t  300 

CLR 

Effects-of the  t h r u s t  recovery parameter.- One-half of t h e  t h e o r e t i c a l  
f u l l  t h r u s t  recovery due t o  supercirculat ion has been assumed in t h e  calcula- 
t i o n s  discussed so  far; t h a t  i s ,  t h e  parameter sd has been s e t  equal t o  one- 
half  i n  equation ( 7 ) .  In view of t h e  large j e t  def lect ions i n  t h e  high-speed 
r e s u l t s  j u s t  discussed, it w a s  f e l t  t h a t  t h e  e f f e c t s  of varying Sd f o r  one 
of these cases would be p a r t i c u l a r l y  i l luminating. 
f u l l  range of sd, from 0 t o  1, for t h e  least-propulsive-force f l i g h t  condi- 
t i o n  of f igure  15 (CX = O.OO5), and r e s u l t s  a r e  shown in f igure  16. Although 
C j ,  decreases with increasing 
large.  More importantly, the  required maximum f l a p  def lect ions increase rap- 
idly;  f o r  example, a t  
recovery t o  log0 with f u l l  t h r u s t  recovery. Cross p l o t s  of 6,, against  S d  

suggest t h a t  t h e r e  probably e x i s t  conditions (of grea te r  speed, or grea ter  
propulsive force)  for which a solut ion could be computed f o r  
could not be computed f o r  S d  = 1. In short ,  the  r e s u l t s  seem almost paradox- 
i c a l  i n  t h a t  they suggest t h a t  high-speed f l i g h t  i s  more readi ly  a t t a i n a b l e  i f  
l e s s  t h r u s t  recovery ac tua l ly  occurs in a r e a l  machine. 

This has been done f o r  the  

sd, as would be expected, the  var ia t ion  i s  not 

as = -16O, 6- increases from 6g0 without t h r u s t  

sa = 0, but 

Another approach t o  examining the  e f f e c t s  of assumed t h r u s t  recovery i s  
t o  consider the  var ia t ion  of r o t o r  forces  with 
and shaf t  angle. This has been done and r e s u l t s  a r e  shown i n  f i g u r e  17. It 
can be seen t h a t ,  r e l a t i v e  t o  t h e  usual value of cx 
i s  doubled f o r  S d  = 0, and cut i n  half  f o r  Sd = 1. The corresponding range 
of d i sk  tilt ( a s  + a=) i s  about 5'. 
t h e  var ia t ion  of Cj,  i s  considered; the  grea te r  force without t h r u s t  recov- 
ery i s  simply due t o  much grea te r  momentum f l u x  required t o  turn the  rotor ,  
and the l e s s e r  force with f u l l  t h r u s t  recovery i s  due t o  t h e  f a c t  t h a t  the  
r o t o r  tu rns  w i t h  much lower momentum f l u x  by v i r t u e  of the t h r u s t  recovery 
assumed. 

S d  f o r  f ixed  control  s e t t i n g s  

= 1/2, the  value of 

Again, t h e  r e s u l t  seems paradoxical u n t i l  

The general  conclusion may be *awn a t  t h i s  point t h a t  speeds wel l  in 
excess of 200 h o t s  may be a t t a i n a b l e  f o r  p r a c t i c a l  pure he l icopters  with j e t -  
f l a p  rotors ,  p a r t i c u l a r l y  i f  l i t t l e  or no supercirculatory t h r u s t  recovery 
occurs on t h e  r o t o r  blades in prac t ice .  



Comparisons With Conventional Rotors 

The comparisons i n  t h i s  sect ion a r e  concerned with performance 
c a p a b i l i t i e s  and power requirements. 

High performance charac te r i s t ics . -  From t h e  generalized charts  of 
reference 13, one may draw cer ta in  conclusions as t o  t h e  a t t a i n a b l e  f l i g h t  con- 
d i t ions  f o r  conventional shaft-driven ro tors .  
t a l  computations which a r e  considered comparable t o  those of t h e  present study.) 
For example, a s o l i d i t y  of about 0.11 f o r  rectangular blades with -8' of t w i s t  
would be required t o  a t t a i n  t h e  f l i g h t  condition of CLR = 0.00488, Cx = 0.0113, 
and V/QR = 0.5 (corresponding t o  the  r e s u l t s  presented on f igures  7 and 9 f o r  
t h e  j e t  f l a p  r o t o r ) .  
by a f a c t o r  of about 2.2, and t h e  required machine can be visual ized as a 4- 
bladed r o t o r  with blades of about 10 percent g r e a t e r  e f fec t ive  chord. To 
a t t a i n  the  grea te r  r e s u l t a n t  force of 
require an approximate threefo ld  increase i n  s o l i d i t y  t o  about 0 ,l5. 

(The charts  a r e  based on d ig i -  

This s o l i d i t y  i s  g r e a t e r  than t h a t  of t h e  j e t - f l a p  r o t o r  

CLR = 0.0065, Cx = 0.015 ( f i g .  7) would 

On the  basis of t h e  charts,  t h e  maximum a t t a i n a b l e  design speed of a 
conventional pure hel icopter  can be estimated t o  be about 200 h o t s  or s l i g h t l y  
more. The s o l i d i t y  required f o r  such speeds would be more than three  times 
t h a t  of t h e  j e t - f l a p  r o t o r .  A few current design s tudies ,  such as r e f e r -  
ences 1 4  and 15, likewise indicate  a speed l i m i t  of t h i s  order, regardless of 
s o l i d i t y  or any other design parameter. I n  contrast ,  as has already been 
shown, computational r e s u l t s  can be obtained f o r  t h e  j e t - f l a p  r o t o r  f o r  speeds 
as high as 300 h o t s .  

Specif ic  power comparison.- A few computations were car r ied  out f o r  a 
shaft-driven r o t o r  having the  same physical c h a r a c t e r i s t i c s  as the  j e t - f l a p  
rotor ,  except t h a t  a i r f o i l  data  based on t h e  c h a r a c t e r i s t i c s  of the NACA 0012 
sect ion were applied t o  t h e  e n t i r e  blade. It may be i n s t r u c t i v e  t o  compare 
t h i s  r o t o r  with t h e  j e t - f l a p  r o t o r  f o r  the  same s p e c i f i c  f l i g h t  condition. 
This has been done i n  f igure  18 f o r  the  condition of 
Cx = 0.0113, and V/QR = 0.3, f o r  which j e t - f l a p  r e s u l t s  were presented i n  f i g -  
ure  7 ( b ) ,  and f o r  which the  conventional r o t o r  i s  close t o  s ta l l .  
f l a p  r o t o r  c l e a r l y  requires  more power. While t h e  data  of f igure  8 ( c )  suggest 
t h a t  s u b s t a n t i a l  reductions i n  Cpo 
choice of blade p i t c h  8 ,  they a l s o  indicate  t h a t  s i g n i f i c a n t  reductions i n  

"COR 
f o r  the  shaft-driven rotor ,  it appears t h a t  s i g n i f i c a n t l y  higher than 

t o t a l  power required f o r  the  former would generally, and perhaps always, be 
higher than t h a t  required f o r  the  l a t t e r ,  f o r  the  same f l i g h t  condition. How- 
ever, while t h e  conventional ro tor  i s  close t o  s t a l l  a t  t h i s  condition, the  
j e t - f l a p  r o t o r  can generate far grea te r  forces,  and f a r  grea te r  speeds, as has 
already been shown. 

C L ~  = 0.00488, 

The j e t -  

might be obtained through an optimum 

a r e  probably not a t ta inable .  Since C f o r  t h e  j e t - f l a p  r o t o r  i s  
'COR 

c'O 
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CONCLUSIONS 

Under the  assumptions made, t h i s  study has l e d  t o  t h e  following 
conclusions : 

1. A j e t - f l a p  ro tor  appears capable of higher self-propelled speed 
than any conventional ro tor .  

2. A j e t - f l a p  r o t o r  can generate f a r  grea te r  forces  than a conven- 
t i o n a l  r o t o r  of t h e  same radius and s o l i d i t y .  

3. For u m t a l l e d  f l i g h t  conditions, a j e t - f l a p  r o t o r  requires more 
power than a conventional r o t o r  of bas ica l ly  s i m i l a r  design. 

4. 
higher i f  t h e o r e t i c a l  supercirculatory t h r u s t  recovery on the blade i s  not 
rea l ized  i n  pract ice .  

The maximum a t ta inable  speed of a j e t - f l a p  ro tor  i s  l i k e l y  t o  be 

5. The momentum and power coef f ic ien ts  required f o r  a given f l i g h t  
condition vary s i g n i f i c a n t l y  with shaf t  angle. 

6. Higher harmonic control  of the  j e t  f l a p  i s  l i k e l y  t o  reduce 
vibrat ions.  

7. The nozzle height does not appear t o  be a sens i t ive  parameter i n  
j e t - f  l a p  r o t o r  design. 

Ames Research Center 
National Aeronautics and Space Administration 

Moffett Field,  C a l i f .  , Ju ly  21, 1965 
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DESIGN PARAMETERS 
AIRFOIL SECTION DATA 
C Z ,  C d  vs a, M, x 

Planform, twist, mass, cutout, 
offset, no. 

I 

FLIGHT CONDITIONS 
I 

Next 
case 

- Adjust X and p 
No 
._ 

I_ COMPUTING PARAMETERS I No. stations, suppressed harmonics, ,- 

. -  

I assumed 

._ .- 

I . .- 

Calc. final output with I 
detail i f  requested 

(a) Flow chart for program A. 

Figure 1.- Flow charts for the computirsg programs for the jet-flap rotor. 



4 
AIRFOIL SECTION DATA 
c2, Cd vs a, M, x . DESIGN PARAMETERS 

Planform, twist, mass, cutout, 
offset, no. blades, nozzle area, ... 

COM PU T I N G PAR AM E TER S 
No. stations, suppressed harmonics, 
assumed flapping, tolerances, ... . 

Calc. CT, CH, A ,  p implied 
by flight conditions 

1 OPERATING CONDITIONS 
51, TDUCT, control settings, ... 

C L ~ ,  Cx, V/51R, as , supercirculation 

lshaft torque cQ, other quantitiesry 

Calc. pressure ratio, and correct 
CQ for Coriolis effects 

Analyze MT harmonically; 
Calc. new flapping harmonics 

4 Yes 

t flapping harmonics 
and momentum coeff Cj, 

t Adjust controls (collective 
and/or cyclic jet - flap 
deflection) 

No t 

Next 
case 

- 
Adjust a, by arbitrary increment 
or to minimum of parabolic f i t  

Yes 

Output summary answers 

detail if requested 

~ ~~ 

No 

( b )  Flow char t  f o r  program X. 

Figure 1.- Concluded. 
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(b) Sign conventions for principal parameters. 

Figure 2. - Concluded. 
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